|
Answer» What is Gradient mean? In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) ∇ f {\displaystyle \nabla f} whose value at a point p {\displaystyle p} is the vector whose components are the partial derivatives of f {\displaystyle f} at p {\displaystyle p} . That is, for f : R n → R {\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} } , its gradient ∇ f : R n → R n {\displaystyle \nabla f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{n}} is defined at the point p = ( x 1 , … , x n ) {\displaystyle p=(x_{1},\ldots ,x_{n})} in n-dimensional space as the vector: ∇ f ( p ) = [ reference
|